For centuries, humans have been fascinated by sleep, and our understanding of it has traced an arc from mythic to scientific. In the early 20th century, the advent of electrophysiological recordings measuring brain activity provided a significant boost to sleep and dream research.
These discoveries opened the door for the investigation of the links between sleep and health, and led to the development of new technologies for diagnosing and treating sleep disorders.
Fast forward to today, as global sleep awareness grows, the need and demand for effective sleep innovation is more acute than ever.
Sleep Loss Epidemic by the Numbers
Sleep has become a critical market precisely because a society without rest pays a premium. Workplace absences, a decline in productivity,
and an increase in healthcare expenses due to sleep- deprivation-related maladies can cost companies—and countries—billions.
Capital Investment and Deals in the Sleep Tech Market
Venture capital investment has steadily increased to a total of +$5B over the past decade, with an upsurge following COVID-19 pandemic-induced sleep disturbances.
Despite capital market slowdowns in 2022 in response to the interest rate environment, Joy’s internal research of 450 sleep-tech companies indicates a strong investment appetite in the sleep-tech market.
Available Sleep Technologies on the Market
The global sleep tech devices market size was valued at USD15,407 Million in 2021 and is estimated to reach the value of USD 60,955 Million by 2030, growing at a CAGR of 16.8% from 2022 to 2030.
As the next era of sleep science and innovation ushers in, this brief offers a glimpse into the future and includes insights on topics such as:
- The current state of the sleep economy
- Investors’ appetite for available sleep technologies and their respective revenue potential
- Perspective from leading neuroscientists on advancements and future trends in sleep and circadian rhythm innovation
- Two research angles that we believe are ripe for exploration:
1. Sleep and Wake Optimization
2. Sleep as Data
Sara Shnider, our US Academic Innovation Lead, discusses how advancements in brain imaging, genetics, neural stem cell models, and AI are enabling groundbreaking personalized health interventions, bridging the gap between neuroscience research and real-world solutions, and her approach to collaborating with academic scientists to translate their breakthrough discoveries into impactful applications.
What excites you most about driving academic innovation in neuroscience, and how do you see CNS contributing to this effort?
Over the last decade, there has been tremendous scientific and technological progress in the neurosciences. Breakthroughs in genetics, advances in human stem cell models, and sophisticated technologies for monitoring brain activity, combined with integration of artificial intelligence (AI) approaches for data analysis, have moved us into a new era of deciphering this fascinating and complex organ that is the brain. Looking into the future, I am excited by all the possibilities of translating these scientific advances into new and effective solutions to treat devastating diseases and injuries to the nervous system.
I find it highly motivating to collaborate with academic scientists on transforming their cutting-edge discoveries into applications that can improve human health. Their creativity and scientific rigor as they push the boundaries of human knowledge is inspiring. However, the incentives in academia typically prioritize publication over commercialization and entrepreneurship, and there is a need to identify those high potential projects that with financial investment and mentorship can be developed into commercially viable products to benefit society.
CNS is contributing by taking a multi-pronged approach toward driving academic innovation by funding research, building companies, and investing in startup companies in the neurosciences. In some cases, CNS funds research within academia to help advance and mature technologies toward commercialization. In other cases, there is existing intellectual property (IP) available for licensing and CNS helps with incubating the companies as they develop their product and business plan, and provides support with strategic advisors and funding. CNS also has a more traditional VC role in funding early stage startup companies from pre-seed to Series A. By combining these approaches, CNS takes the long view and can also invest in efforts that need further research.
In your opinion, what are some of the biggest challenges and opportunities facing neuroscience today, and how can we work together to overcome them?
One of the greatest challenges in drug development for neurological disorders is patient heterogeneity. Patients are diagnosed into distinct disease classes, but in practice patient symptoms and disease progression are often highly variable. This makes it challenging not only to design clinical trials, but also to know which patients will respond to which intervention. In psychiatry in particular, finding the effective treatment typically involves a lengthy process of trial-and-error that prolongs patient suffering and increases costs. There is a recognized need to shift toward more nuanced biomarkers for diagnosing and subtyping patients based on disease mechanisms to enable development of personalized treatments. This is a transformation that the field of cancer therapeutics has undergone over the last 20 years, where treatments are now being tailored for each patient based on the genetic profiles of the tumor.
That being said, this is also an era of remarkable progress in genetics, brain imaging, and neural stem cell models derived from individual patients. When these tools are combined with powerful artificial intelligence approaches, it enables patient classification based on underlying disease mechanisms and brain circuitry, and opens the door to development of personalized interventions. One exciting example in the neurodegenerative disease space is the recent FDA approval of a drug to treat a genetically defined subset of people with amyotrophic lateral sclerosis. There are also exciting efforts in personalized psychiatry, using patient-derived stem cells and AI to predict which treatment will be most effective for each patient.
One avenue where I think the clinical and research communities could work together is to increase reporting of unsuccessful research studies and clinical trials. There is a need to incentivize sharing and publication of negative results, so that the stakeholders involved in developing new neuroscience solutions could learn from each others’ experiences and move faster toward successful results.
Another challenge has been the lack of representation of diverse populations in clinical research, albeit this is not a challenge unique to the neurosciences. According to data from the Food and Drug Administration, in 2020 75% of clinical trial participants were white, and the majority of clinical trial volunteers have historically been male. There is a need for more inclusive clinical studies to include more women, racial and ethnic minorities, and participants from diverse geographic and socio-economic backgrounds. In addition to being an ethical issue about health equity, diversity of clinical research participants is essential to determine safety and efficacy of therapeutic interventions across different populations. On this front, the boost toward remote clinical trials that occurred during the COVID-19 pandemic has created a new opportunity for inclusivity. Leveraging wearables, sensors, and telehealth, it is now increasingly possible to broaden the participant population to include people who may not have easy access to clinical trial sites. Social media also provides an opportunity to increase patient engagement and access diverse communities for clinical trial recruitment. But of course, it is a gradual process and there is still so much more progress needed in this direction.
What made you want to pursue a career in life sciences, and how has your background prepared you for your role at CNS?
At this point it may be cliché’, but my interest in neurosciences started when I read “An Anthropologist on Mars” by the late Dr. Oliver Sacks. In The Case of the Colorblind Painter, he tells the touching story of an artist who needs to re-invent their identity at age sixty-five following a concussion that leaves them colorblind. I became fascinated by the complexity and mystery of the brain. Although it appears to be just another multicellular organ in our body, it is intricately tied to our identity, and when injury or illness disrupts brain function, it changes our personality and sense of self. I decided to pursue an undergraduate degree in biology with a focus on neuroscience, and a PhD in neurobiology. My research focused on elucidating how diverse neurons in the neocortex, the brain region responsible for most high-level cognitive functions, acquire their identity and specialized function during development.
Over the last 10+ years since graduating from my PhD, I have focused on translating innovative scientific discoveries into applications that can benefit patients through industry-academia partnerships. I have worked at both a large academic medical center and a global pharmaceutical company on strategic and operational aspects of collaborative research projects, as well as licensing and entrepreneurship programs. I look forward to leveraging this expertise to lead CNS’s efforts to develop new health solutions in the neurosciences by building a diverse portfolio of partnerships with academic investigators in the United States.
What strategies do you find most effective for driving progress in academic innovation (particularly in terms of translating research discoveries into real-world solutions)?
I believe that it is extremely valuable to have partnerships with stakeholders outside academia that intend to use and/or commercialize the technology. Having this perspective incorporated into the scientific direction early on can substantially accelerate progress toward commercialization of academic innovations. However, there is no ‘one-size-fits-all’ approach that works for situations. For some early stage projects with commercial potential, the most effective approach may be a short-term pilot grant to explore a novel approach, while a technology that is more developed but that requires further validation may best be served through a multi-year collaborative research project that includes a licensing agreement with a strategic investor. For some innovative projects, an incubator for launching a startup company might be the best launchpad.
That being said, there are some critical elements for successful commercialization of academic innovation. The partnerships need to be mutually beneficial. For example, academic investigators need to publish, while industry partners put a premium on confidentiality and profits. For successful research collaborations, all parties need to understand the incentives and objectives of their partners and yet still feel confident that their interests are being addressed. In addition, as in any team effort, the relationships are key. It is essential to have a perspective of building long term relationships and prioritize establishing trust between the partners. As relationships become more established, everyone becomes more invested in the project’s success.
Looking ahead to the future of neuroscience research, what do you think will be some of the most exciting developments in the field, and how can we ensure that these advances are used to benefit society?
There are some very exciting advances in technologies for imaging, tracking and modulating brain activity. One example is novel non-invasive neurostimulation approaches to alleviate severe depression in people who have tried multiple pharmacological interventions with no success. Over the next decade, I would hope to see a breakdown of the silos the pharmaceutical and medical device industries, and new solutions involving both drugs and devices that may in combination work better than either approach alone.
Another exciting area that is progressing rapidly is the field of brain-computer interface (BCI) technology, where a device records and analyzes brain activity and decodes it to control a robot or send commands to a computer. These technologies open a whole world of potential for people with limited mobility or loss of speech, such as in ALS. These BCI solutions are continuously improving, and I look forward to seeing how they are applied to increasingly help patients overcome disabilities due to injury or disease.
I believe investors play a meaningful role in steering scientific advances toward societal benefit. It is exciting to be part of a team that is driven by turning scientific discoveries into products that solve unmet needs in the neurosciences. I look forward to sharing more about our activities as we move forward with new projects and investments!
Discover how smell impacts hormones, cognition, social connections, and the potential of digitizing smell.
Delve into Dr. Davidson’s groundbreaking research exploring meditation’s impact on the brain.
The company gained clearance to market its flagship product, Prism for PTSD, the first non-invasive, self-neuromodulation adjunct digital therapy for post-traumatic stress disorder (PTSD).
The global problem of insufficient sleep is driving a growing industry and research field dedicated to helping us make the most of our sleep-wake cycle. With rapid advancements in technologies unlocking new opportunities, from optimizing circadian rhythms to leveraging sleep measurements for the diagnosis and prediction of patient health, it’s never been a more exciting time to discuss the future of this domain.
At our recent virtual event, we hosted leading neuroscientists and internationally recognized authorities on sleep and circadian rhythms, Prof. Yuval Nir and Steven Lockley Ph.D, to talk about what we can expect from this field in the years to come.
Tech12 reports on CNS portfolio company, NYX’s neurotech solution for better sleep. Article in Hebrew.
The article delves into the groundbreaking research of Prof. Talma Handler and Prof. Asya Rolls who are studying how the brain can influence immune responses.
In a new paper from 2017 grant recipients Hadas Ikon-Singer, Uri Hertz, Or David Agassi and a research team at the University of Haifa present a data analytic approach to studying the effects of cognitive training on anxiety reduction.
CNS portfolio company, GrayMatters Health, developer of digital self-neuromodulation therapeutics for mental disorders, announced that it has been named as a Falling Walls Venture Winner.
When we crave a snack, why do we often find ourselves reaching for that cookie instead of an apple? Clearly, one option is healthier than the other, and yet our temptations override our better judgment. How can we break out of that cycle to make better life choices? Is there a way to overcome behaviors like biting our nails when we get nervous or downing that bag of chips when our stress levels start to peak?
Our most recent grantees are an interdisciplinary team of researchers at the University of Haifa currently working to empower people to overcome their hard-to-break ingrained habits by using non-invasive brain stimulation to shift their behavior towards more beneficial life choices and behaviors. The team includes Dr. Shai Gabay, associate professor at the evolutionary cognitive neuroscience lab and the head of the Institute of Information processing and decision making (IIPDM); Dr. Yafit Gabay senior lecturer at the learning and language lab and Dr. Uri Hertz, senior lecturer at the social decision-making lab. They will explore how transcranial direct current stimulation (tDCS), a painless solution that uses electrical currents to stimulate specific parts of the brain, can activate the neural centers that directly control attention and eye movement, which are associated with attention and decision making.
tDCS is a brain stimulation method that can be applied to modulate areas in the brain associated with addictive behavior and drug abuse. It is also used for many non-medical wellness applications such as accelerated learning, focus, relaxation, and meditation.
Using this method together with activating participants’ frontal eye field (FEF), a part of the brain responsible for saccadic eye movements (rapid, ballistic movements of the eyes that abruptly change the point of fixation) and attentional orienting, they hope to influence participants’ choices and steer them away from their current habits by modifying their ‘free will’” by activating neural mechanisms that will produce an artificial attentional bias without them being aware of this taking place in their brains.
Why this is different and how they’re doing it:
Until this point, previous studies focused on manipulating neural regions of the brain involved in decision making and control. This approach will bypass these processes and influence behavior by activating the brain’s neural centers that directly control attention and eye movement which is known to have an effect on people’s behavior patterns, and in this case, their ‘bad habits.’
The research team is expanding on the latest developments in the computational modeling of decision making and attention. The lab work will start by examining whether tDCS can be used to influence participants’ choices in a ‘free-will’ task. In the next phase, they will use the same technique to see if participants can overcome habits that are formed within the laboratory setting – shifting choices towards counter-habitual over habitual responses. And finally, they will evaluate whether this can be applied in a real-world situation to be used to overcome actual and harmful habits connected with self-control and attention.
Helping people make better food choices
One of the most promising areas of real-life application of this research is helping those who struggle with habitual external eating, or eating food not only when they are hungry, but just in reaction to sights and smells. But the potential applications are endlessly vast, especially because the therapy should be able to be tailored to treat conditions at different stages, for both long-term and short-term relief.
”Such an approach may be useful in a variety of severity levels, providing a small boost or a longer treatment protocol where needed,” says the researchers. “Our approach may also provide novel scientific insights concerning the neural mechanisms that control the interactions between attention and habit formation, and establish a new experimental procedure to better characterize the neural and cognitive basis of habit formation and deployment.”
Overcoming bad habits can seem almost impossible, especially when they are hard-wired into our brains and seem to control our every behavior. While finding a solution to this age-old problem may seem daunting, this is exactly the thing that inspires us at CNS. We are excited to get in on the ground floor with this cutting-edge research that has the potential to pave a path toward improved wellbeing in a way that can be accessible, consistent and effective.
We all know that a good night’s sleep is essential for a healthy mind and body and that a lack of sleep can lead to various physical and mental ailments, including exhaustion and difficulty concentrating. But lack of sleep can underpin almost all of our daily functions, including our ability to empathize with others.
While not often discussed or studied, empathy is a basic social skill, involving both cognitive and emotional aspects. It alerts us if a person is in pain or distress, and allows us to relate to or care for them accordingly. Not only is empathy important for building healthy relationships, but it is also crucial for many professions, and for a healthy and functioning society.
Our interdisciplinary group of grantees– Alex Gileles-Hillel, a doctor in the pediatric pulmonology and sleep unit at Hadassah Medical Center, Shoham Choshen-Hillel, a Hebrew University business school professor, and Anat Perry, a psychology professor at the Hebrew University– will delve deeper into the connection between sleep and empathy and explore potential remedies to improve healthcare professionals’ wellbeing and job performance.
Addressing an ongoing hidden problem in healthcare
By supporting this new research project in Jerusalem, we hope to advance the understanding of how sleep affects empathy, especially among physicians, who often work long shifts without rest. This sleep deprivation can cause their levels of empathy to drop, decreasing their ability to connect with patients in order to effectively treat them.
This research, which is the first to investigate the direct effects of sleep on empathy, revolves around testing CogNyx, a non-invasive headband developed by our portfolio company, NYX Technologies that helps the wearer achieve the optimal natural brainwave patterns necessary for falling asleep and entering deep sleep, and the effects this device has on improving sleep quality and cognitive and social functioning.
The goal is to change the autonomic nervous system to increase empathy by developing an intervention to reduce the negative effects of doctors’ sleep deprivation on both their ability to be present and compassionate as well as their ability to diagnose and treat their patients.
In addition to measuring sleep quality, our grantees will study its direct link to empathy by examining how participating doctors respond to pain, the emotions of others and overall decision-making ability after sleeping with or without the use of the CogNyx device.
Opening the door to better sleep and empathy for the larger population
The CogNyx device and associated research on the links between sleep and empathy have potential to increase wellbeing for people beyond doctors and their patients, who no doubt benefit from their caregivers’ increased empathy.
Eventually, such a headband or other wearable device could be an effective solution for the mainstream population to enable more people to benefit from better sleep.
“Sleep deprivation is a modern-day epidemic affecting nearly every sector of the population, gaining a better understanding of its effects and how to measure and overcome them, should have immense implications for all parts of society, from insomnia patients to parents of young children to shift-workers and anybody else struggling to get a good night’s rest, ” explains Gileles-Hillel.
We are excited to see where this research will take us and how it can potentially open up more possibilities to solve the problem of sleep deprivation to enable more empathy not just for doctors treating their patients but for all suffering from sleep deprivation.
While sleep disruptions, working long hours and night shifts are things we cannot change, the path towards better sleep and gaining all the benefits from this important life function can be eased through this groundbreaking research. By combining multidisciplinary research and cutting-edge technology, we are sowing the seeds of a more compassionate and better future.
At CNS’s recent virtual meetup, esteemed researchers Dr. Daniele Di Lernia and Rani Cohen, Co-Founder and chairman of GrayMatters Health, shared how they are translating groundbreaking research into transformative mental wellbeing products and navigating the road from science to product.
Below, we recap the session’s key takeaways, from how much supporting research is needed before advancing to product development, to the importance of focusing on the end-user from day one.
More than a decade ago, when Italian researcher Dr. Daniele Di Lernia first began to learn about the body’s interoceptive system–which helps us perceive or feel processes inside ourselves, including pain, stress, and fatigue– he immediately asked himself how science and technology could manipulate this system to help people feel and live better.
“This question actually shaped our research,” recalled Di Lernia, a researcher at the Catholic University of the Sacred Heart in Milan, who now leads a CNS-backed project, at our recent event, “From Science to Product.”
In fact, it was this question that has brought Di Lernia’s group from lab research to its current advanced stage of testing a non-invasive prototype bracelet that targets and stimulates the interoceptive system via the skin. By gently stimulating nerve receptors in the skin, which are extremely sensitive to touch, the wearable device aims to reduce stress, anxiety, and pain.
Rani Cohen, the second speaker at our event and Co-founder and Executive Chairman of GrayMatters, a company that is developing a groundbreaking and easier way to deliver life-changing neurofeedback therapy, also said that it was the potential of new lab research to reach a wide audience that has inspired much of his work. The tech behind GrayMatters’ device which allows the use of cheaper EEG sensors, rather than MRI machines, to measure brain activity, is a result of many years of research led by Dr. Talma Hendler at Tel Aviv University, where she won world acclaim for her scientific projects related to emotional experiences and the human brain.
Identifying “minimal viable research”
Translating research into a viable product is an ongoing challenge in the field of mental well-being technology, according to Di Lernia and Cohen. “It’s very difficult to find research that has enough data to start a company on,” Cohen said.
Cohen focused on the importance of what he calls “minimal viable research,” or the amount of research and data needed to get investors on board when developing a product. For example, when he first encountered the technology behind GrayMatters, developed at the Technion Israel Institute of Technology, he saw that it had “huge potential but needed verification.” It was only after three more years of additional research that he and his team were ready to approach investors to back the idea, he recalled.
Putting consumers and end-users first
Di Lernia’s main advice was to be constantly thinking of the high-level goal of any research project; this prevents the dilemma that many startups find themselves in of having a novel technology but struggling to find a practical use for it. “Try to look for the practical application of your idea and let this define science and tech,” he said. “It seems quite obvious, but this doesn’t happen enough in the research field and in academia. We are so focused on science that often we forget to think about the people that could actually benefit from this kind of science.”
Having the end-user in mind is also important in guiding the design process, he said. He recalled that although many participants in his team’s lab experiments were thankful for the technology improving their lives, having to come into a lab for treatments was often not ideal. That’s why they decided to develop a wearable version. “The technology must adapt to people,” he said. “People do not need to adapt to the tech.”
Also, often exactly how or why something works is not as important as the fact that it has been proven to work, Di Lernia said. He explained that although his team has shown that skin stimulation can reduce chronic pain by 23%, “to be honest, we still have no clear idea why this kind of stimulation works.” He cited several research-backed explanations of the possible mechanism and said future work will examine this question more carefully. But in the meantime, his team is still moving forward to develop a wearable device based on the technology.
Working with a business mindset
The balance between science and entrepreneurship can be a delicate one, Cohen said.
“Researchers need academic freedom, they are not there to make a profit, and this can be contradictory to business,” he said. He talked about the importance of building trust between researchers and the business side of any product collaboration.
As an entrepreneur “you have to make business decisions at the end of the day. Sometimes research needs to go in a different direction, and it’s best if you can reach a point where you can make those decisions with the researchers.”
Both Cohen and Di Lernia emphasized that the most successful products cater to real market demand. Cohen explained that the fact that mental health takes a larger financial toll on society than cancer and diabetes combined, was the main reason he decided to found GrayMatters. Di Lernia recalled studying market demand for answers when facing the dilemma of which direction to go with his research on the body’s interoceptive system, which plays a role in so many conditions, including eating disorders, addiction, and fatigue. His team ultimately decided to focus first on chronic pain because it is a pervasive problem lacking meaningful solutions.
“Chronic pain is a social emergency,” he said. “Even if we just help a few percent of people suffering, it could have a massive impact on society.”
It all goes back to science
While the road to market can be long, scientific research is key to finding long-term solutions for improving mental well-being.
“The first step is and always has been science,” Di Lernia said. And that science should be driven from the beginning “by a simple question of how can I use this to change society?”
Since the onset of the pandemic, more people have been seeking out alternative methods to reduce stress, anxiety, depression and other mental disorders with meditation as an increasingly popular choice.
With over 35 million adults saying they have tried meditation at least once, the number of people engaging in this practice has tripled since 2012. This increase is also reflected in the meditation & mindfulness industry, now estimated to be worth about $1 billion.
However, many people who try mindful meditation, which requires high levels of discipline and can bring up painful memories, are unable to stick with the practice long enough to reap the benefits that improve depression, anxiety and other conditions.
Our 2020 grantees Dr. Joseph “Jay” Sanguinetti, assistant director of the University of Arizona’s Center for Consciousness Studies, and Prof. John J. B. Allen, Distinguished Professor of Psychology, are developing a non-invasive technique to help people feel the benefits of mindfulness more quickly, and thus stay with the process, creating a cycle of benefits.
Making the most of meditation: Facilitating mindfulness training with ultrasonic waves
By fostering an attitude of acceptance and emotional resilience, mindfulness through meditation has proven effective for many people struggling with mental and emotional disorders such as anxiety and depression. The ancient practice has risen sharply in popularity recently, partly due to the stress of the pandemic, with the number of adults who say they have meditated at least once tripling since 2012. But feeling the benefits of mindfulness also requires a high level of discipline and commitment over many months. It is only with dedicated practice of intense meditation that the brain will enter what experts call a state of equanimity, or acceptance, which is ultimately what improves one’s mood and boosts energy while reducing stress.
Unfortunately, data shows that most people are unable to maintain a regular practice of mindfulness long enough to achieve this equanimity and reap its long-term benefits. Developing the discipline that mindful meditation requires, and sticking with it regularly can be especially challenging for those who need it the most. For example, people with depression can experience a ‘backdraft effect’ where mindful meditation ends up making them feel worse in the short term – triggering past traumas and depressive thoughts, which makes them less likely to stick with the practice for the long term, when it can eventually have a positive effect.
But, what if achieving mindfulness was less of a struggle? What if there were a shortcut to training the brain to benefit from such practice early-on, motivating people who need it the most to commit to a more effective practice? This is exactly what our scientists, Dr. Joseph “Jay” Sanguinetti, assistant director of the University of Arizona’s Center for Consciousness Studies, and Prof. John J. B. Allen, a Distinguished Psychology Professor at the University of Arizona, are working to achieve. Their goal is to harness technology to get more people to equanimity quicker and keep them on the path towards mindfulness long enough to really change their lives and improve wellbeing.
A Modern Day Approach to an Age-Old Practice
Dr. Sanguinetti and Prof. Allen are currently working to see if using ultrasound waves to modulate brain activity of those who are new to practicing mindfulness helps them achieve the powerful benefits of this practice more quickly. This will lay the groundwork towards developing a hand-held ultrasound brain stimulator, and allowing more people to easily and effectively incorporate mindfulness into their lives. This targeted and focused research will go beyond the apps and other existing technological efforts that aim to facilitate mindfulness today, which often fall short because of their generalized approach.
So far research already shows enticing results: Participants who underwent transcranial focused ultrasound (tFUS), an emerging non-invasive technique to temporarily modulate neural activity, while engaging in meditation reported feeling profound inner peace after just weeks of practice. They said their thoughts flowed more freely, and they felt merged with their surroundings, two long-established characteristics of those who practice long-term mindful meditation.
The researchers say that meditation can improve following the delivery of these low intensity ultrasound waves, which are proven safe, because they help reduce activity in the brain’s default mode network (DMN), a system of brain regions that show less activity when someone is concentrating and focused. In fact, MRI results show that long-term practitioners of mindful meditation have significantly reduced DMN activity. In other words, the ultrasound waves can facilitate and possibly amplify the calming effects of mindful meditation on the brain, creating a cycle where one feels the benefits faster and more significantly, which, in turn leads to more routine practice and more benefits.
Mindfulness tailored to the individual
Our grantees also recognize that embracing a successful routine of mindfulness is not a one -size-fits-all practice. Therefore, their ongoing research also includes a personalized phone app, tailored to each individual to help them overcome their own barriers such as traumatic memories and negative thoughts that might come up with meditation. In addition, the ongoing research includes a wide range of participants, including healthy individuals as well as those suffering from chronic pain, depression and anxiety.
The research could be groundbreaking in that it could eventually lead to a practical solution that will enable more people to incorporate mindfulness into their daily lives. While the research is currently lab-based, relying on a prototype of an ultrasound stimulator, along with regular MRIs, they hope it will lead to an easy-to-use handheld device that can then be used in clinics and wellness retreats later this year, and maybe, someday, by people at home.
Most meaningful life changes require meaningful efforts to get there, and that’s where many people get stuck in our modern, busy world. We believe that technology holds the key to making life-changing practices, including mindful meditation, more accessible and practical, allowing them to truly have deep and long-lasting effects. We are excited to embark on this journey with Dr. Sanguinetti and Prof. Allen and their teams, and we are confident that this partnership will take this technology from the lab out into the world, yielding incredible results for the human experience.
With little exposure to daytime sunlight, and nights brightened by screens and indoor and outdoor lighting, our modern lifestyle has thrown us out of sync with the natural patterns of brightness and darkness that are key to mental and physical wellbeing.
Now, CNS grantees, a neurobiologist, Maria Korman and an occupational therapist Rinatia Maaravi-Hesseg from Ariel University’s occupational therapy department are trying to compensate for indoor lifestyle – induced problems with sleep and psychological wellbeing by using lighting solutions that mimic the natural sunrise.
Can such interventions really make a significant difference? We take you behind the scenes of one project that proves they can.
–
For decades, our modern lifestyles have been keeping us indoors, making us heavily dependent on artificial light. This has thrown our bodies out of sync with the natural cycles of light and darkness that regulate the body’s internal clock, mood, and cognitive function, and are key to basic physiological processes like regulation of body temperature, heart rate, and metabolism. The pandemic, which has led to spending even more time indoors, has only exacerbated this issue, reducing people’s exposure to natural light by 58% during lockdowns. Ultimately, this disconnect with the natural light cycle has resulted in negative psychological and physiological effects.
So when a grant proposal from doctors Maria Korman and Rinatia Maaravi-Hesseg to research how human-centric light technology that mimics sunrise can benefit wellbeing, landed on our doorstep, we knew it was something important that we wanted to fund. The physiological effects of light is an understudied area of science that could have a significant impact on people’s health and mental wellbeing. And there is also a vast commercial potential for such life-changing indoor lighting solutions. In fact, solutions for regulating circadian rhythm in an era of indoor-living and artificial light is a top priority for the wellness tech sector.
“We are always racing against the clock, and feel there is a lack of time, and I believe this is related to the fact that modern society does not rely on natural time cues, especially, changes in light” says Korman, a neurobiologist at Ariel University. “This really hurts our life and our health because under ever-present artificial light we have an illusion of everlasting daytime, which is, of course, devoted to activity. Ultimately, this is reducing our chance to rest and restore. Our goal is to find a smart way out of this race against time using technology to change our light environment. Light is extremely critical to our health, and mental and physical wellbeing.”
Bright nights are not good for us
Differing levels of light have long been a key part of human life. Before the advent of electricity, the timing of the sunrise and sunset determined people’s schedules, including when they slept, worked, socialized and ate. Even when fire, and fuels like gas, emerged to create light at night, these were used in limited quantities due high costs, meaning that nights were still dark, for the most part. Early artificial light sources also had a low blue light component, which is known to promote wakefulness.
“Only in modern times did we become addicted to artificial light,” Korman says, explaining that we constantly desire more and more light. “It’s like sugar, the more you have the more you want.” The omnipresent indoor lighting after sunset, including blue light from LEDs, phone and computer screens, combined with outdoor light from buildings, cars, street lamps and other sources, make nights as bright–or maybe even brighter (think about stadium or stage lighting) –than days.
We essentially have gloomy days with little exposure to sunlight, and overly bright nights. This leads to delayed sleep, lower sleep quality and shortened sleep, and, ultimately, to a multitude of negative health effects, including an increase in rates of depression. These effects are explained by the fact that light-at-night causes the body to produce less melatonin and also directly modulates the activity in brain areas that keep our body clock in sync with the environment.
Naturally Resetting Our Internal Clocks
A possible solution to the negative effects of our indoor lifestyle and resulting misalignment with the natural time, is to expose people to bright artificial light during the morning hours, mimicking the sensation of the natural gradual increase in brightness that starts at sunrise, before your alarm clock rings. Observational studies have found that intense light in the morning is connected to better sleep and lower rates of depression. Korman and Maaravi-Hesseg, a neurobiologist and occupational therapist who also works at Ariel University, will use the grant to expand on previous research, which found that a bedside lamp mimicking the intensity of outdoor light at different times of day, including sunset, darkness, and sunrise, helped people improve their schedules, energy levels and moods.
Indoor light that echoes the course of natural outdoor light throughout the day is part of what Korman calls “the four D’s that lead to improved sleep and wellbeing”: Those include daylight, dim light in the afternoon and evening, a digital diet, or limiting our use of screens at night, and exposure to complete darkness while sleeping.
Korman and Maaravi-Hesseg’s research is especially promising not only because it is rooted in scientific evidence, but also because it is examining solutions that are simple to use. Such unobtrusive interventions like special lamps can easily be used at home and work, in the background; they can be preprogrammed and adjusted to one’s schedules and they don’t require attention. This makes the approach different from existing solutions that require wearing cumbersome blue-light blocking glasses, following the directions of an app or spending large amounts of time sitting under specialized lights.
“We want to improve people’s daily lives without causing inconvenience,” says Maaravi-Hesseg.
Advancing our understanding of how light affects us
Their continuing research will also lead to more scientific understanding of the differences between natural and artificial light, and how light affects health and wellbeing. Studying these relatively neglected aspects of light is important to us at CNS, and for the general advancement of science and technology to help us improve our wellbeing.
Traditionally, most study of light has been related to how it helps us see. But the non-visual aspects of light are clearly critical to human functioning, both psychologically and psychologically. This new research will help clarify our bodies’ relationship with ambient light and develop seamless technological ways to control our light environment in a way that benefits our health and wellbeing. Hopefully, this will light the path out of a lifestyle that so often feels hyperactive, and exhausting; a lifestyle without enough sleep and rest.
Research team Félix Schoeller, PhD, Adam Haar Horowitz and Abhinandan Jain of MIT are using their CNS grant to examine whether the wellbeing benefits of naturally-occurring chills can be reproduced.
Everyone experiences them. Nearly every culture exalts them. The uniquely intense emotional sensation known as chills, frisson, goosebumps, chaire de poule (French), gänsehaut (German), gæsahúð (Icelandic), amagqabi (Xhosa)…it’s seemingly as universal as sneezing or smiling.
Frisson is profoundly tied to meaningful peak emotional experiences—a climactic moment in a movie or a novel, a crescendo in a symphony, a religious experience, an intense interpersonal encounter (including sex). And much research has been conducted on the phenomenon’s psychophysiological benefits—stress reduction, enhanced pleasure and empathy, improved social cognition and even true positive transformative experiences.
But can the benefits of frisson go both ways? What happens if we elicit the physical manifestation of chills, without the psychogenic stimuli that usually causes it? Do we get the same benefits?
In other words, are all goosebumps equal?
Wearable Tech Meets the Chills
To answer this question, CNS grantee Félix Schoeller, PhD, together with Adam Haar Horowitz and Abhinandan Jain of the Fluid Interfaces Group at MIT Media Lab, created wearable technology that replicates, stimulates and enhances psychogenic shivers, AKA chills.
Félix is no stranger to neuroscientific and psychological research, with a large body of original work, collaborations and attributions to his name, notably in the field of interoception – our sense of the internal state of our bodies. With a BFA in filmmaking, and Master’s from the Interdisciplinary School for Advanced Studies in Social Science (EHESS) in Paris, and postdocs at the Centre for Research and Interdisciplinarity in Paris and at the French Institute for Health and Medical Research (INSERM) – Félix was eminently qualified to address the issue.
In this task, he was joined by Adam and Abhi. Adam was a neuroscience researcher at MIT’s McGovern Institute for Brain Research before he became a PhD student and project leader of the Dream Lab, an interdisciplinary research lab focused on dream science that sits under Professor Pattie Maes’ Fluid Interfaces Group at MIT’s Media Lab. Abhi is also a PhD student at the Media Lab studying under Professor Maes. He is trained as an Electronics Engineer and his interests lie in creating technologies for interoceptive interventions.
The team’s hypothesis was simple: they knew that our relationship with our bodies actively informs both our internal emotional life and our perception of the external world. This is known as embodied cognition. Thus, they hypothesized that if organically-occurring psychogenic chills impact cognition, then artificially-generated chills could as well.
The applications – both research and commercial – are intriguing. A device that induces the positive effects of chills could be used to combat anhedonia, the lack of pleasure associated with depression and other mood and affective disorders. It could assist those with impaired empathy or social cognition – autism or alexithymia, for example – in detecting aberrant emotional processing in real time, and even help them respond more appropriately with personalized, sensor-based recommendations of augmented content.
The team’s initial results were very positive. They found that the wearable device did indeed increase reported feelings of empathy and pleasure in subjects. This is highly promising – both for its potential applications to the field of wellbeing, and to scientific inquiry into the underlying mechanisms surrounding chills.
They are now preparing the next round of experiments at Roy Salomon’s Lab of Consciousness and Self at the Gonda Multidisciplinary Brain Centre at Bar-Ilan University. The Salomon lab focuses on the cognitive and neural processes underlying perceptual consciousness and bodily self-consciousness. They use a combination of virtual reality, physiological signals, psychophysics and neuroimaging (EEG, MEG, fMRI) paradigms to study these processes in humans – both in neuro-typical populations and in clinical populations showing deficits in self-representation (e.g. Schizophrenic patients).
Next Research Steps
To further augment the knowledge of frisson, the team extended some prior work Felix had done with network scientist Marc Santolini at CRI Paris to build software to search YouTube for comments on video content mentioning words from the “chills dictionary” – shivers, chills, goosebumps, frisson, etc. From this raw material, they are currently crowdsourcing an effort to create a “chills gold standard” database – asking viewers to record where in each video they experienced chills, the intensity of these chills, and more.
The object of this effort? The team intends to pair their device with this content in an experimental setting. They’re going to create a portable closed-loop system for presenting chills stimuli, combined with psychophysiological sensors and mechanical actuators simulating the sensation of chills – then measuring subject responses in real time.
Why is this relevant? The team believes that artificial frisson sensations could be used to induce emotional processing that will help contextualize the attention paid to interoceptive and exteroceptive sensations. For example, in children with autism, artificial sensations that did or did not produce psychogenic shivers could be used to assess interoceptive sensitivity. Similarly, individuals with alexithymia could be more effectively assessed – quantifying the extent to which they recognize chills-inducing and non-chills-inducing content, and their differential event-related responses.
The Bottom Line
In answer to our question: it is entirely possible that a goosebump is a goosebump is a goosebump.
In other words, the psychophysiological benefits of psychogenic frisson appear to be similar to those from artificially-induced chills. The pleasure and wellbeing naturally derived from peak emotional experiences may be duplicatable. Moreover, the ability to discern whether an experience is or is not emotionally meaningful may be quantifiable.
At the very least, the team expects their device and research to offer a deeper understanding of the role that bodily sensations play in brain function. Yet ultimately, this enquiry could serve as a game-changing basis for commercial and clinical tools that effectively interface with the body to improve health and wellbeing.
At CNS, we are committed to accelerating profound discoveries and cutting-edge technologies to drive impact across broad areas of mental wellbeing. Félix, Adam and Abhi’s project is a perfect example of the great things that can happen when cutting edge technology and academic research join to find viable, effective solutions. We are thrilled to be supporting this team and look forward to sharing the results of their project!